Statistical Geometry of Fuzzy Lumps and the Connection with Random Metric Spaces
نویسنده
چکیده
We develop a kind of pregeometry consisting of a web of overlapping fuzzy lumps which interact with each other. The individual lumps are understood as certain closely entangled subgraphs (cliques) in a dynamically evolving network which, in a certain approximation, can be visualized as a time-dependent random graph. This strand of ideas is merged with another one, deriving from ideas, developed some time ago by Menger et al, that is, the concept of probabilisticor random metric spaces, representing a natural extension of the metrical continuum into a more microscopic regime. It is our general goal to find a better adapted geometric environment for the description of microphysics. In this sense one may it also view as a dynamical randomisation of the causal-set framework developed by e.g. Sorkin et al. In doing this we incorporate, as a perhaps new aspect, various concepts from fuzzy set theory. PACS: 04.60.-m, 04.20.Gz
منابع مشابه
On metric spaces induced by fuzzy metric spaces
For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm, we present a method to construct a metric on a fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space. Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some probl...
متن کاملExtended graphs based on KM-fuzzy metric spaces
This paper, applies the concept of KM-fuzzy metric spaces and introduces a novel concept of KM-fuzzy metric graphs based on KM-fuzzy metric spaces. This study, investigates the finite KM-fuzzy metric spaces with respect to metrics and KM-fuzzy metrics and constructs KM-fuzzy metric spaces on any given non-empty sets. It tries to extend the concept of KM-fuzzy metric spaces to a larger ...
متن کاملINTUITIONISTIC FUZZY QUASI-METRIC AND PSEUDO-METRIC SPACES
In this paper, we propose a new definition of intuitionistic fuzzyquasi-metric and pseudo-metric spaces based on intuitionistic fuzzy points. Weprove some properties of intuitionistic fuzzy quasi- metric and pseudo-metricspaces, and show that every intuitionistic fuzzy pseudo-metric space is intuitionisticfuzzy regular and intuitionistic fuzzy completely normal and henceintuitionistic fuzzy nor...
متن کاملSome topological properties of fuzzy strong b-metric spaces
In this study, we investigate topological properties of fuzzy strong b-metric spaces defined in [13]. Firstly, we prove Baire's theorem for these spaces. Then we define the product of two fuzzy strong b-metric spaces defined with same continuous t-norms and show that $X_{1}times X_{2}$ is a complete fuzzy strong b-metric space if and only if $X_{1}$ and $X_{2}$ are complete fu...
متن کاملUniformities in fuzzy metric spaces
The aim of this paper is to study induced (quasi-)uniformities in Kramosil and Michalek's fuzzy metric spaces. Firstly, $I$-uniformity in the sense of J. Guti'{e}rrez Garc'{i}a and $I$-neighborhood system in the sense of H"{o}hle and u{S}ostak are induced by the given fuzzy metric. It is shown that the fuzzy metric and the induced $I$-uniformity will generate the same $I$-neighborhood system. ...
متن کامل